Benha University Faculty Of Engineering at Shoubra

ECE 122 Electrical Circuits (2)(2016/2017) Lecture (3) Parallel Resonance

Prepared By : Dr. Moataz Elsherbini

motaz.ali@feng.bu.edu.eg

Remember

Series Resonance Wo=-2 Z= R+j(WL-wc) -> total series Res. Z= R cat resonance). = _____o BN=W2-W1 3 $w_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{L}{Lc}\right)} \cong w_0 - \frac{B/2}{\Rightarrow \text{From helly Amer}}$ at Z= VZR $\omega_2 = \frac{+R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{1}{Lc}\right)} \cong \omega_0 + \frac{B}{2}$ -Fromhalf Powe $\omega_0 = \sqrt{\omega_1 \omega_2}$ R = WORC

Parallel Resonance Circuit

It is usually called tank circuit

FIG. 20.21 Ideal parallel resonant network.

FIG. 20.22 Practical parallel L-C network.

The total admittance

$$Y = Y_1 + Y_2 + Y_3$$

$$Y = \frac{1}{R} + \frac{1}{(j\omega.L)} + \frac{1}{(-j/\omega.C)}$$

$$Y = \frac{1}{R} + \frac{-j}{\omega L} + j\omega C$$

$$Y = \frac{1}{R} + j(\omega C - 1/\omega L)$$

Condition for Ideal Parallel Resonance

Resonance occurs when the imaginary part of Y is zero

$$\omega C - \frac{1}{\omega L} = 0$$

$$X_C = X_L.$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \text{ rad/s}$$

At parallel resonance:

- \checkmark At resonance, the admittance consists only conductance G = 1/R.
- ✓ The value of current will be minimum since the total admittance is minimum.
- ✓ The voltage and current are in phase (Power factor is unity).
- ✓ The inductor reactance and capacitor reactance canceled, resulting in a circuit voltage simply determined by Ohm's law as:

$$\mathbf{V} = \mathbf{I}R = IR \angle 0^{\circ}$$

The Q of the parallel circuit is determined from the definition as

$$Q_{\rm P} = \frac{\text{reactive power}}{\text{average power}}$$
$$= \frac{V^2 / X_L}{V^2 / R}$$

 $Q_{\rm P} = \frac{\kappa}{X_{\rm LP}} = \frac{\kappa}{X_{\rm C}}$

The current

$$I_R = \frac{V}{R} = I$$

L

$$\mathbf{I}_{L} = \frac{\mathbf{V}}{X_{L} \angle 90^{\circ}}$$
$$= \frac{V}{R/Q_{P}} \angle -90^{\circ}$$
$$= O_{P} L \angle -90^{\circ}$$

$$C = \frac{\mathbf{V}}{X_C \angle -90^\circ}$$
$$= \frac{V}{R/Q_P} \angle 90^\circ$$
$$= Q_P I \angle 90^\circ$$

 ✓ The currents through the inductor and the capacitor have the same magnitudes but are 180 out of phase.

Reciprocal of series case

 Notice that the magnitude of current in the reactive elements at resonance is Q times greater than the applied source current.

Parallel resonant circuit has same parameters as the series resonant circuit.

Resonance frequency:

Half-power frequencies:

Bandwidth and Q-factor:

 $BW = \frac{\omega_P}{R(\omega_P C)} = \frac{X_C}{R}\omega_P$

$$\omega_{\rm p} = \frac{1}{\sqrt{\rm LC}} \, \rm rad/s$$

$$\omega_1 = -\frac{1}{2RC} + \sqrt{\frac{1}{4R^2C^2} + \frac{1}{LC}} \quad (rad/s)$$

$$\omega_{2} = \frac{1}{2RC} + \sqrt{\frac{1}{4R^{2}C^{2}} + \frac{1}{LC}} \quad \text{(rad/s)}$$
$$BW = \omega_{2} - \omega_{1} = \frac{1}{-\pi} \quad \text{(rad/s)}$$

$$BW = \frac{\omega_P}{Q_P} \quad (rad/s)$$

$$Q = \frac{\omega_0}{B} = \omega_0 RC = \frac{R}{\omega_0 L}$$

I deal circuit I PR BL-C 2) X1 = Xc at Resonance or wp = 1 rad/s 3) Y = = = - 1+1/2+1/3 $=\frac{1}{R}+j(\omega c-\frac{1}{\omega c})$ 4) at Resonance Gi = 1 BV, I in phase. Gadmittane 9121 + 24 + low $5 Q_P = \frac{R}{X_c} = \frac{R}{X_L} = \frac{\omega_P}{Bw}$ = R/WL = WRC 6) BW= W2-W1 = 1 rod/s = wg/Qp RC rod/s

 $\overline{Z}\omega_{I}=\frac{-1}{2RC}+\sqrt{4Rc^{2}}+\frac{1}{LC}$ $w_2 = \frac{+1}{2RC} + \frac{1}{4R^2c^2} + \frac{1}{Lc} m_g^2$ Note For Midbaud WI=WP-BIZ WZ=Wp+Blz

Example

Example

Consider the circuit shown in Figure

- a. Determine the resonant frequencies, $\omega_P(rad/s)$ and $f_P(Hz)$ of the tank circuit.
- **b.** Find the **Q** of the circuit at resonance.
- c. Calculate the voltage across the circuit at resonance.
- d. Solve for currents through the inductor and the resistor at resonance.
- e. Determine the bandwidth of the circuit in both radians per second and hertz.
- f. Sketch the voltage response of the circuit, showing the voltage at the half-power frequencies.
- g. Sketch the selectivity curve of the circuit showing P(watts) versus ω (rad/s).

Solution

a.
$$\omega_{\rm P} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(16 \text{ mH})(0.4 \ \mu\text{F})}} = 12.5 \text{ krad/s}$$

$$f_{\rm P} = \frac{1}{2\pi} = \frac{1}{2\pi} = \frac{1}{2\pi} = 1989 \,\,{\rm Hz}$$

b.
$$Q_{\rm P} = \frac{R_{\rm P}}{\omega L} = \frac{500 \ \Omega}{(12.5 \ \text{krad/s}) \ (16 \ \text{mH})} = \frac{500 \ \Omega}{200 \ \Omega} = 2.5$$

c. At resonance,
$$\mathbf{V}_C = \mathbf{V}_L = \mathbf{V}_R$$
, and so

$$V = IR = (3.6 \text{ mA} \angle 0^\circ) (500 \ \Omega \angle 0^\circ) = 1.8 \text{ V} \angle 0^\circ$$

d.
$$\mathbf{I}_L = \frac{\mathbf{V}_L}{\mathbf{Z}_L} = \frac{1.8 \text{ V} \angle 0^\circ}{200 \ \Omega \angle 90^\circ} = 9.0 \text{ mA} \angle -90^\circ$$

$$\mathbf{I}_R = \mathbf{I} = 3.6 \text{ mA} \angle 0^\circ$$

e. BW(rad/s) =
$$\frac{\omega_P}{Q_P} = \frac{12.5 \text{ krad/s}}{2.5} = 5 \text{ krad/s}$$

BW(Hz) = $\frac{BW(rad/s)}{2\pi} = \frac{5 \text{ krad/s}}{2\pi} = 795.8 \text{ Hz}$

f. The half-power frequencies are calculated from Equations 21–48 and 21–49 since the Q of the circuit is less than 10.

$$\omega_{1} = -\frac{1}{2RC} + \sqrt{\frac{1}{4R^{2}C^{2}} + \frac{1}{LC}}$$
$$= -\frac{1}{0.0004} + \sqrt{\frac{1}{1.6 \times 10^{-7}} + \frac{1}{6.4 \times 10^{-9}}}$$
$$= -2500 + 12\ 748$$
$$= 10\ 248\ rad/s$$

Solution

$$\omega_2 = \frac{1}{2RC} + \sqrt{\frac{1}{4R^2C^2} + \frac{1}{LC}}$$

= $\frac{1}{0.0004} + \sqrt{\frac{1}{1.6 \times 10^{-7}} + \frac{1}{6.4 \times 10^{-7}}}$
= 2500 + 12 748
= 15 248 rad/s

The resulting voltage response curve is illustrated in Figure 21-32.

g. The power dissipated by the circuit at resonance is

$$P = \frac{V^2}{R} = \frac{(1.8 \text{ V})^2}{500 \,\Omega} = 6.48 \text{ mW}$$

The selectivity curve is now easily sketched as shown in Figure 21-33.

M M Thank You

U

W