Benha University

Faculty Of Engineering at Shoubra

ECE 122
Electrical Circuits (2)(2016/2017)

Dr. Noataz Hsherimi
motaz.ali@feng.bu.edu.eg

Remember

Series Resonance
(1) $\omega_{0}=\frac{1}{\sqrt{L C}} \quad, f_{0}=\frac{1}{2 \pi \sqrt{L C}}$
[2] $Z=R+j\left(\omega L-\frac{1}{\omega c}\right) \rightarrow t_{0}+2$ lerises.
$z=R$ (at resonance).
(3) $B W=\omega_{2}-w_{1}=\frac{R}{L}=\frac{\omega_{0}}{(4)}$

(5) $\omega_{0}=\sqrt{\omega_{1} \omega_{2}}$
(6) $Q=\frac{\omega_{0} L}{R}=\frac{1}{\omega_{0} R C}$

Parallel Resonance Circuit

It is usually called tank circuit

Ideal Circuits

FIG. 20.21
Ideal parallel resonant network.

Practical Circuits

FIG. 20.22
Practical parallel L-C network.

Ideal Parallel Resonance Circuit

The total admittance

$$
\begin{aligned}
& Y=Y_{1}+Y_{2}+Y_{3} \\
& Y=\frac{1}{R}+\frac{1}{(j \omega \cdot L)}+\frac{1}{(-j / \omega \cdot C)} \\
& Y=\frac{1}{R}+\frac{-j}{\omega L}+j \omega C \\
& Y=\frac{1}{R}+j(\omega C-1 / \omega L)
\end{aligned}
$$

Condition for Ideal Parallel Resonance

Resonance occurs when the imaginary part of Y is zero

$$
\begin{gathered}
\omega C-\frac{1}{\omega L}=0 \\
X_{C}=X_{L}
\end{gathered}
$$

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s}
$$

Ideal Parallel Resonance Circuit

At parallel resonance:

\checkmark At resonance, the admittance consists only conductance $G=1 / R$.
\checkmark The value of current will be minimum since the total admittance is minimum.
\checkmark The voltage and current are in phase (Power factor is unity).
\checkmark The inductor reactance and capacitor reactance canceled, resulting in a circuit voltage simply determined by Ohm's law as:

$$
\mathbf{V}=\mathbf{I} R=I R \angle 0^{\circ}
$$

\checkmark The frequency response of the impedance of the parallel circuit is shown

Ideal Parallel Resonance Circuit

The Q of the parallel circuit is determined from the definition as

$$
\begin{aligned}
Q_{\mathrm{P}} & =\frac{\text { reactive power }}{\text { average power }} \\
& =\frac{V^{2} / X_{L}}{V^{2} / R} \\
Q_{\mathrm{P}} & =\frac{R}{X_{L \mathrm{P}}}=\frac{R}{X_{C}}
\end{aligned}
$$

Reciprocal of series case

The current

$$
\mathbf{I}_{R}=\frac{\mathbf{V}}{\mathbf{R}}=\mathbf{I}
$$

$$
\begin{aligned}
\mathbf{I}_{L} & =\frac{\mathbf{V}}{X_{L} \angle 90^{\circ}} & \mathbf{I}_{C} & =\frac{\mathbf{V}}{X_{C} \angle-90^{\circ}} \\
& =\frac{V}{R / Q_{\mathrm{P}}} \angle-90^{\circ} & & =\frac{V}{R / Q_{\mathrm{P}}} \angle 90^{\circ} \\
& =Q_{\mathrm{P}} I \angle-90^{\circ} & & =Q_{\mathrm{P}} I \angle 90^{\circ}
\end{aligned}
$$

\checkmark The currents through the inductor and the capacitor have the same magnitudes but are 180 out of phase.
\checkmark Notice that the magnitude of current in the reactive elements at resonance is Q times greater than the applied source current.

Ideal Parallel Resonance Circuit

> Parallel resonant circuit has same parameters as the series resonant circuit.
Resonance frequency:

$$
\omega_{\mathrm{p}}=\frac{1}{\sqrt{\mathrm{LC}}} \mathrm{rad} / \mathrm{s}
$$

Half-power frequencies:

Bandwidth and Q-factor:

$$
\mathrm{BW}=\frac{\omega_{\mathrm{P}}}{R\left(\omega_{\mathrm{P}} C\right)}=\frac{X_{C}}{R} \omega_{\mathrm{P}}
$$

$$
\begin{aligned}
& \omega_{1}=-\frac{1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}} \quad(\mathrm{rad} / \mathrm{s}) \\
& \omega_{2}=\frac{1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}} \quad(\mathrm{rad} / \mathrm{s}) \\
& \mathrm{BW}=\omega_{2}-\omega_{1}=\frac{1}{R C} \quad(\mathrm{rad} / \mathrm{s}) \\
& \mathrm{BW}=\frac{\omega_{\mathrm{P}}}{Q_{\mathrm{P}}} \quad(\mathrm{rad} / \mathrm{s})
\end{aligned}
$$

$$
Q=\frac{\omega_{0}}{B}=\omega_{0} R C=\frac{R}{\omega_{0} L}
$$

ملخص قوانين المحاضرة

Ideal circuit

(2) $x_{L}=x_{c}$ at Resonance $\therefore \omega_{p}=\frac{1}{\sqrt{L c}} \mathrm{rad} / \mathrm{s}$
(3)

$$
\begin{aligned}
Y & =\frac{1}{z}=Y_{1}+Y_{2}+Y_{3} \\
& =\frac{1}{R}+j\left(\omega c-\frac{1}{\omega_{2}}\right)
\end{aligned}
$$

4) at Resonax $G i=\frac{1}{R}$
$\sum_{21} u$, I in phase \measuredangle adruittone

5)

$$
\begin{aligned}
& Q_{p}=\frac{R}{X_{C}}=\frac{R}{R_{L}}=\frac{\omega_{p}}{B W} \\
& =R / W L=\omega R C
\end{aligned}
$$

6

$$
\begin{aligned}
B W & =\omega_{2}-\omega_{1}=\frac{1}{R C} \mathrm{rad} / \mathrm{s} \\
& =\omega_{p} / Q_{p}
\end{aligned}
$$

$$
\begin{aligned}
{\left[7 \omega_{1}\right.} & =\frac{-1}{2 R C}+\sqrt{\frac{1}{4 R^{2}}+\frac{1}{L C}} \\
\omega_{2} & =\frac{+1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}}
\end{aligned}
$$

Note For Midband

$$
\begin{aligned}
& w_{1}=w_{p}-B L_{2} \\
& w_{2}=w_{p}+B / 2
\end{aligned}
$$

Example

Example

Consider the circuit shown in Figure

a. Determine the resonant frequencies, $\omega_{p}(\mathrm{rad} / \mathrm{s})$ and $f_{p}(\mathrm{~Hz})$ of the tank circuit.
b. Find the Q of the circuit at resonance.
c. Calculate the voltage across the circuit at resonance.
d. Solve for currents through the inductor and the resistor at resonance.
e. Determine the bandwidth of the circuit in both radians per second and hertz.
f. Sketch the voltage response of the circuit, showing the voltage at the half-power frequencies.
g. Sketch the selectivity curve of the circuit showing P (watts) versus $\omega(\mathrm{rad} / \mathrm{s})$.

Solution

a. $\quad \omega_{\mathrm{P}}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{(16 \mathrm{mH})(0.4 \mu \mathrm{~F})}}=12.5 \mathrm{krad} / \mathrm{s}$

$$
f_{\mathrm{P}}=\frac{\omega}{2 \pi}=\frac{12.5 \mathrm{krad} / \mathrm{s}}{2 \pi}=1989 \mathrm{~Hz}
$$

b. $\quad Q_{\mathrm{P}}=\frac{R_{\mathrm{P}}}{\omega L}=\frac{500 \Omega}{(12.5 \mathrm{krad} / \mathrm{s})(16 \mathrm{mH})}=\frac{500 \Omega}{200 \Omega}=2.5$
c. At resonance, $\mathbf{V}_{C}=\mathbf{V}_{L}=\mathbf{V}_{R}$, and so

$$
\mathbf{V}=\mathbf{I R}=\left(3.6 \mathrm{~mA} \angle 0^{\circ}\right)\left(500 \Omega \angle 0^{\circ}\right)=1.8 \mathrm{~V} \angle 0^{\circ}
$$

d.

$$
\begin{aligned}
& \mathbf{I}_{L}=\frac{\mathbf{V}_{L}}{\mathbf{Z}_{L}}=\frac{1.8 \mathrm{~V} \angle 0^{\circ}}{200 \Omega \angle 90^{\circ}}=9.0 \mathrm{~mA} \angle-90^{\circ} \\
& \mathbf{I}_{R}=\mathbf{I}=3.6 \mathrm{~mA} \angle 0^{\circ}
\end{aligned}
$$

e. $\quad \mathrm{BW}(\mathrm{rad} / \mathrm{s})=\frac{\omega_{\mathrm{P}}}{Q_{\mathrm{P}}}=\frac{12.5 \mathrm{krad} / \mathrm{s}}{2.5}=5 \mathrm{krad} / \mathrm{s}$

$$
\mathrm{BW}(\mathrm{~Hz})=\frac{\mathrm{BW}(\mathrm{rad} / \mathrm{s})}{2 \pi}=\frac{5 \mathrm{krad} / \mathrm{s}}{2 \pi}=795.8 \mathrm{~Hz}
$$

f. The half-power frequencies are calculated from Equations 21-48 and 21-49 since the Q of the circuit is less than 10 .

$$
\begin{aligned}
\omega_{1} & =-\frac{1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}} \\
& =-\frac{1}{0.0004}+\sqrt{\frac{1}{1.6 \times 10^{-7}}+\frac{1}{6.4 \times 10^{-9}}} \\
& =-2500+12748 \\
& =10248 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Solution

$$
\begin{aligned}
\omega_{2} & =\frac{1}{2 R C}+\sqrt{\frac{1}{4 R^{2} C^{2}}+\frac{1}{L C}} \\
& =\frac{1}{0.0004}+\sqrt{\frac{1}{1.6 \times 10^{-7}}+\frac{1}{6.4 \times 10^{-9}}} \\
& =2500+12748 \\
& =15248 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

The resulting voltage response curve is illustrated in Figure 21-32.
g. The power dissipated by the circuit at resonance is

$$
P=\frac{V^{2}}{R}=\frac{(1.8 \mathrm{~V})^{2}}{500 \Omega}=6.48 \mathrm{~mW}
$$

The selectivity curve is now easily sketched as shown in Figure 21-33.

